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Introduction

 This presentation covers several key aspects of
antenna engineering:
— Theory
— Practical antenna design technigues
— Overview of actual antennas

— Goal Is to enable participants to:
 Understand antenna basics

« Efficiently design, model, select and/or evaluate
antennas



Circuit Theory “Quiz”

* Every current must return to it’s source.

* The path of the “source” and “return” current
should be determined.

* Current “takes the path of least”




Circult Theory Realities!

 Path 1s by “conduction” or “displacement”.

« The majority of the current takes the path of
least impedance.

— If current is DC (impedance Is determined by
resistance).

— If current is not DC (including pulsed DC),
Impedance is determined by reactance.

 Capacitance determined by conductor proximity
* Inductance determined by current loop path



Background

* Frequency and wavelength
— Drives fundamentals of antenna design
— Related to physical dimensions of antennas

* Decibel —“dB”
— Used to measure ratio
— Significance of “3 dB”
— Significance of “6 dB”



E/M Wave “Polarization”

e Transmitter and receiver

ST, antenna polarization
refers to the E field
vector orientation.

A INDUCTION FIELD « A monopole on a typical

PROPAGATION WireIeSS deViCe USES
o vertical polarization.

B RADIATION FIELD




Maxwell’s Equations

cBir, 1)

w O V < E(r,f)= — 7 r — position vector
— g . t—time
Q= vaenrn=2nY, e | E—Electrical Field intensity (Volts/meter)
% g ot H — Magnetic Field Intensity (Amps/Meter)
© o Vgbino=piri) B — Magnetic flux density
= J — Conduction current density

V4@ Bir, 1) =0 :

p — volume charge density
where L1 — permeability
Bir, 1) = uM(r, 1} - permittivity
Dr, 1) = ¢E(r, 1)

e These form the foundation of the “wave equation”
which can be used to determine all the parameters In
electromagnetic wave propagation.



Metrics of Electromagnetic
(E/M) Waves

Travel at/near speed of light (in vacuum/air/free
space) = (nearly) 3.00 x 10”8 meters/sec.

Can be expressed as frequency.

“Length” of one cycle 1s expressed as “wavelength”,
or “Lambda”.

— Lambda ( A ) = Propagation speed / frequency
— For 1 MHz, A =300 meters
— As frequency increases, wavelength decreases.

Frequency and wavelength used interchangeably.
— E.g. 15 MHz = 20 meter



Antenna Purpose

Used to transfer energy

Antenna performance based upon physical
parameters

Goal Is to understand antenna performance as
a function of each parameter

Analogies to light sources are helpful in
understanding antenna theory



Antenna Performance

Antenna performance 1s generally a “reciprocal”
process — 1f the antenna works well to transmit a
signal, 1t will work well on receiving a signal.
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Antenna “Regions”

€ewe lwavelength ___._s
| ¢—— from 2 wavelengths
{————--————— 2 wavelengths --—--————-—-= out to infinity -—
HEAF.—FIELI:: REGION TRANSITION ZONE FAR-FIELD REGION
reactive | radiative The maximurn overall
MEAR-FIELD! MNEAR-FIELLH dimension of the source

antenna "D" is a prime
factor in determining

Lo MITM= ¥ this boundary,
or I The far-field generally

. 0.159 wavelength starts at a distance of
| 2xD2 X\ out to infinity,

 Near field consists of reactive and radiative
conditions.

 Far field 1s the typical condition for antennas.
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Near and Far Field Physics

 Location of a receiver in the near field may
affect the source and a receiver 1n the far field
has no 1impact upon the source.

* The E/M wave 1n each region has a
“Characteristic Impedance” of Zw.

e In the far field, the Zw = 377 ohms.
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Near Field Physics

In the near field Zw < 377 or > 377 ohms.

Wave impedance 1s determined by:
/w=|E|/|H|

E 1s the electric field vector.
H 1s the magnetic field vector.

For a low Z source, H-field dominates.
For a high Z source, E-ficld dominates.
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E-Field Antenna

» Most wireless system
antennas are designed to
utilize the electric field
component of E/M wave
for communication.

 This type of antenna can
be represented as an
“open’ capacitor.
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Magnetic Field Antennas

* Another type is the loop
antenna.

« This is a closed loop
resonant circuit.
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Key Parameters

* Antenna gain and “patterns”
— “@Gain” 1s a function of geometry

— Additional metrics are used to express directivity
details

 Beamwidth
« Sidelobes

» Impedance
— Complex number

— Can be used to determine approximate
performance
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Additional Parameters

« Bandwidth

— Derived figure of performance
— Based upon directory and impedance characteristics

— Used to express characteristics for a particular frequency
band

« Efficiency
— Impacts directivity

— Reflected in the antenna gain metric
— Typically only a few percent loss is experienced
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Antenna “Pattern”

« Non-isotropic antenna
3 2 exhibits “pattern” of
gain (field intensity).
 Can take advantage of
this property to increase
communication range
ability.
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Electrical and Physical Size

 Many antennas are
physically constructed
to be a specific length
corresponding to the

~— &S TER-WWL&L'YE
‘ = ANTEMHA

signal wavelength. .,
- Typical antennas are Md‘
multiples of ¥4 of a |

wavelength, for
“resonant’ conditions.
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Antenna Physics

Antennas are conductors.

Conductors have physical dimensions (length,
width, area)

Physical dimensions result in development of
Impedance due to inductance and capacitance.

Reactive elements create resonant circuits.
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Electrical Model of Antenna
Parameters

* An antenna can be represented just like any other type
of electrical component.

« Can be expressed as a complex impedance load:
Zani = Ry + )X (0hms)
Where: i 'A'A'=0000 |

R, 1s the “Radiation Resistance” (a derived value describing how effective
the antenna is in transferring power to/from the medium)

JX is the value of the sum of the reactance (due to series inductance and
capacitance).
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Description of Antenna

Parameters

« R, of ¥2 wavelength antenna (typically called a
monopole) Is about 37 ohms.

» Antenna reactance is the “jX”, and 1s the same
as a series resonant circuit.

— When the antenna length is physically shorter than
Ya wavelength, j X is negative and antenna “looks”

capacitive.
— When “jX = 0" the antenna is “resonant”.
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2 Wave Antenna??

« Hand held transceivers
typically use ¥4 wave
antennas due to
simplicity of design.

« 27 MHz transceiver
shown at right has an %
wave (electrical length)
antenna?
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“Reduced Size” Antennas

* Shortened monopole

— Lumped elements

— Distributed winding of inductance
 Shortened dipole

— Lumped elements

— Daistributed winding of inductance

e “Slot” or “patch” antenna
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“Tuning” an Antenna - Problem

» |deal antennaZ =R + 0, shortoneisZ=R X

* Need to somehow add “jX” to obtain Z = R — JX +JX

| — VW~
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“Tuning” an Antenna — Solution!

Ideal antennaZ =R +j 0, shortoneis Z=R —JX
Need to add “4X” to obtain Z = R — JX +JX

Add “9X” by adding inductance

Acts as series resonant circuit

-~ —AAN-
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Physical “Short” Antennas

Impedance

« If the physical length is o
reduced, this affects J | U .
both radiation resistance . ,i ‘%‘“’“5\/ 7 //
and reactance. :f/ .

 Applies to both [ /’}’; j,/ }f/ o
monopoles and dipoles. 7= § . / /{%ﬁj"/ ot

* Reduces “efficiency” of l R/ /}“m; j -
antenna (radiation , c’/ / AT T T
resistance) and requires ﬁ - / i ’
“tuning” to be done. O ™
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Mobile Two-way Radio Antennas

* Primary
communications for
public services

* Frequencies in use
required smaller
antennas than standard
length

 “Loaded” antennas used
to reduce size
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Recent Antenna Examples

5. This antenna design is a combination of quadrifilar and PIFA struciures.

CrDsSea oIpoies

.
o
-
»

......

N\

Monopoles

4 This XM antenna features a crossed dipole/monopole array combination.

New technologies
required use of

advanced antenna types.

Some concepts
eliminate external
antenna and integrate 1t
into vehicle structure.
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Examples of Antenna Structures
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Antenna Measurements

« Typical measurements consist of gain, pattern,
polarizations, bandwidth, and efficiency

 Need to know 1if in near or far field

« Best method 1s comparison with a “standard
antenna’ that has documented characteristics
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Basic Antenna Tools

« An electrical oriented
“multi-tool” 1s used to
cut wire and tighten
connections.

A tape measure is used
to determine physical

lengths required for

\ various frequencies.

Me%‘éiire
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My Personal Favorite — The

 Designed for antenna
engineering, this device
generates a NB RF
signal from 1.7- 174
MHz (and 440 — 450
MHZz).

« Measures (at user
selected frequencies)
complex Z, C, L, and
cable loss factors.
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“Reduced Size” Antennas

 Shortened monopole
— Lumped elements
— Distributed winding of inductance

 Shortened dipole
— Lumped elements
— Distributed winding of inductance

» “Slot” or “patch” antenna
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Antenna Simulation Methods

« Antenna simulation are becoming more
common and utilize numerical integration to
performed to solve complex problems.

« Examples of three packages:

— Numerical Electromagnetics Code (NEC)

— Field Computation for Objects of Arbitrary Shape
(FEKO)

— JEMLab (iPad based!)
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Dipole Length = 0.5000 | A

z = 0.0000 | &

Calculated Dipole Values
Dipole Length = 0.5000 &

Rjy= 7.312959¢+01 Q
X, = 4.254456c+01 Q
Prg = 3.656480e+01 W

Directivity = 2.151 dB

Wire Radius = 1.000e-05 | &

(Wire radius only affects input reactance.)

lot Points:

Range:

e Traditional Y2 wave
“resonant antenna’.

 Analysis shows antenna
pattern, current
distribution, gain, and
complex impedance
expected.
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- Effect of a physically
short dipole can be seen.
 Antenna pattern similar o

to ¥2 wave dipole.

e Current distribution
changed, radiation T
resistance reduced, and
gain Is decreased.

Dipole Length = 0.1500 | &

z = 0.00000 | &

Calculated Dipole Values
Dipole Length = 0.1500 &

R, = 4.576778¢+00 Q
Xin = -1.859214¢+03 Q
Pg= 4.716538¢-01 W

Directivity = 1.793 dB
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Wire Radius = 1.000e-05 | &

(Wire radius only affects input reactance.) (7]



t Point
720
namic
Range:
40
er
Scale:
10,005
Dipole Lengtt 1.5000 | A
L____
[ n
-1.00000
z
z = 0.00000 3

Calculated Dipole Values
Dipole Length = 1.5000 &

Ry, = 10549420402 Q
X = 4554101c+01 Q

Pog= 5274712¢+01 W

Directivity = 3.476 dB

Wire Radius = 1.000e-05 | &

(Wire radius only affects input reactance.)

« At length equal 1%
wavelengths, there is a
very complex radiation
pattern that results.

 Radiation resistance
Increases (antenna Is
more “efficient”).

e [s difficult to “match” to

transmission line.
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Types of Antennas in EMC
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« Antennas are a critical part of EMC testing.
[t Is important to know what type of antenna applies

to a particular EMC test.

« EMC antennas are all based on physics (loop antenna

on left Is for magnetic fields, monopole for E-fields.
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Dipoles in EMC Testing

« EMC testing can be done using dipole antennas.

 |f a specific frequency Is being tested — conventional
dipoles can be used.

* For a wide frequency range a special “broadband”
antenna (bi-conical) is typically used.
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Gain Antennas In EMC

 (Gain antennas are also used for emissions and
Immunity testing.

 Allows for very directional measurements or RF
targeting to be accomplished.
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‘“Antenna Factor”
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Frequency in MHz

“Antenna Factor” 1s a measure of how efficient an
antenna iIs in converting field strength to voltage.

The lower the antenna factor — more efficient the
antenna is in producing an output voltage.
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Antenna System Interface
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* Antenna (“E-field” antenna shown) 1s connected to
the transmitter via a transmission line.

* Objective 1s to send/receive power/signal with
minimal loss from/to transmitter/receiver.
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Transmission Line Development

» Heaviside realized that the use of two conductors 1n
the telegraph “transmission” line resulted 1n
capacitive and inductive properties of the line.

» He understood that the capacitance and inductance
was continuous along the length of the pair of
conductors.

44



Transmission Line Types

e “Coaxial” cable consists
of an inner conductor
COPPER BRAID and an outer conductor
OUTER COMDUCTOR .
that also functions as a
shield.

o “Twin Lead” consists of
two identical conductors
and 1s a “balanced”
cable.

WIRE INMER
CONDUCTOR e’ "

FOLYETHYLENE

LOW - LOSS
DIELECTRIC
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Transmission Line Model

it uhiis nhihis nhiis thiii tne
WW

» Model that was developed that utilized a line of
“distributed” inductance and capacitance..

* |t was discovered that the line could be represented
by a “surge” (or characteristic) impedance (ignoring
small dielectric losses) of:
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Transmission Line Metrics

« Transmission lines are characterized in terms of
Impedance, and is a function of a per-unit length of
Inductance (L), capacitance (C), and resistance.

— A simplified expression for impedance Is (neglecting
resistance of the conductors) is Z = (L/C)V2

— Note that Z does not depend on the length of line.

« Example: RG-58 cable has a specified capacitance of
23 pt/ft , Z= 50 ohms, and “TV Twin lead” has a
specified capacitance of 4.5 pf / ft, Z=300 ohms.
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Emerging Issues in Antennas

e The continued “miniaturization™ of electronic
communication systems requires more
functionality 1n smaller spaces.

e Multiple communication methods within the
devices (such as Wi-F1, CDMA, GSM,
Bluetooth) require highly efficient antennas for
cach of the applications — without significant
compromises in performance!
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Summary

» Basics of antenna engineering and use of
transmission lines can be understood through
the application of physics and analogies to
electric circuits.

* New methods possible in antenna simulation
can provide valuable insight.

« Simple tools can enable antenna design and
development to be done efficiently and
effectively!
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