

Dr. Cheung-Wei Lam Apple Distinguished Engineer IEEE EMC Respected Speaker

lam@alum.mit.edu

Outline

• What are they?

L = Inductance

I® = Current Return Path

- Why do we care?
- Common Misconceptions
- How do we control them?
- Summary

L: What is it?

- Various kinds: *loop*, *mutual*, external, internal, kinetic, self, *partial*, self partial, mutual partial, partial mutual, ...
- Definition of inductance for closed loops:

$$L_{1} = \frac{\Psi_{1}}{I_{1}} \qquad M_{21} = \frac{\Psi_{21}}{I_{1}}$$

- External, internal, kinetic
- Self, *partial*, self partial, mutual partial, partial mutual

L: Recommended References

- Book:
 - Clayton Paul, "Introduction to Electromagnetic Compatibility"
- Paper:
 - Al Ruehli, "Inductance Calculations in a Complex Integrated Circuit Environment," IBM Journal of R&D, September 1972.
- Articles:
 - Bruce Archambeault, "Decoupling Capacitor Connection Inductance," IEEE EMCS Newsletter, Spring 2009
 - Bruce Archambeault, "Part II: Resistive vs. Inductive Return Current Paths," IEEE EMCS Newsletter, Fall 2008

L: Why do we care?

- Affects signal quality, crosstalk, EMI.
- Voltage Drop/Fluctuation

$$V_{L} = L \frac{dI_{L}}{dt} \qquad \frac{+ V_{L} - V_{L}}{I_{L}}$$

Crosstalk & EMI

$$V_2 = M_{21} \frac{dI_1}{dt}$$
 $M_{21} = L_{21}$

L: Why do we care?

- Transmission Line Discontinuity & LC resonance
- Filtering & Decoupling

$$- Z_c(f)$$

$$- f_o = \frac{1}{2\pi\sqrt{LC}}$$

6

- Mistake loop L as sum of self inductances (L_{self}) ??
- Overlook the importance of return proximity??

L: Mounting Inductance

- Increase width.

— Think return proximity! (closer plane/vias, via-in-pads)

— Think loop inductance!!

- Ground Bounce \propto Self Inductance (L_{Self})??
 - Ground Bounce is a main source of CM radiation!

L: $\Delta V = L_G dI_G/dt$

L: Transmission Line Inductance

L: Ground Inductance

• Transmission Line: $L_T = L_S + L_G$

• Ψ_G = magnetic flux around ground conductor

$$L_G = \frac{\Psi_G}{I_G}$$

Magnetic FieldElectric Field

L: L_G = ?

- $L_G = self inductance??$
 - $-L_G = M_G (DM \rightarrow CM)$
 - Partial inductance
 - Pairs (S, P, V, W)
 - $L_{GP} = L_T/2$
 - Microstrip
 - $L_{GM} \ll L_{T}$
 - Stripline
 - $L_{GS} \ll L_{GM}$
 - Coaxial
 - $L_{GC} \approx 0$

Magnetic Field

Electric Field

• Pigtail termination is bad because of its L_{Self} ??

• Ground Bounce & Package Coupling $\propto L_{Self}(L_P)$ of Pin??

• Ground Bounce & Package Coupling $\propto L_{Self}(L_P)$ of Pin??

• Ground Bounce & Package Coupling $\propto L_{Self}(L_P)$ of Pin??

• Ground Bounce & Package Coupling $\propto L_{Self}(L_P)$ of Pin??

- Think loop-to-loop mutual inductance!

• Ground Bounce & Package Coupling $\propto L_{Self}(L_P)$ of Pin??

- Think loop-to-loop mutual inductance!

- Via Inductance = L_{Self} ??
 - Think loop inductance!

- Overlook the dependence on current distribution??
 - Current distribution affects inductance!

- Overlook the importance of return proximity??
 - Think separation.
 - Think return proximity!

- L_{Self} degrades capacitor performance??
 - Think mutual inductance!

- Smaller is always better??
 - Excess capacitance causes reflections!

- Inductance parallels down like resistors??
 - Don't forget M!
 - Spread out decoupling capacitors!
 - Alternate power/ground pins!

- Overlook mounting inductance vs. component inductance??
 - Don't spend on expensive low-L filters unless layout has already been optimized.

IR: What is it?

• Signal ground is a current source/sink??

• Ground plane is a zero-impedance equipotential surface??

$$-V_G = I_G Z_G = I_G (R_G + j\omega L_G) \neq 0$$

М

IR: Why do we care?

- Increases current loop area A
 - EMI ↑
- Increases loop inductance L
 - Signal Quality ↓
 - EMI ↑
- Increases mutual inductance M
 - Crosstalk ↑
 - **EMI** ↑
- Increases ground (return) inductance L_G or M_G
 - **EMI** ↑

- Current takes the least resistance path??
 - $Z_G = R_G + j\omega L_G$
 - Think R at $f \le kHz$.
 - Think L at f ≥ MHz!

- Current returns along intended paths??
 - IR drop → common-Z coupling.
 - Current spreads out at $f \le kHz$.
 - Single-point grounding used for:
 - Low-level analog subsystems,
 - High-level noisy subsystems, e.g. motor drivers.

• Current returns through ground but not power??

- Ground and power planes are interchangeable??
 - Ground is connected to chassis, but not power.
 - Power isolation breaks the symmetry.

• Current returns through ground but not power??

- Ground and power planes are interchangeable??
 - Ground is connected to chassis, but not power.
 - Power isolation breaks the symmetry.

• Overlook horizontal return path??

- Traces crossing plane cuts
 - Avoid ground plane cuts.
 - Route around plane cuts.
 - Use stitching capacitors.

- Overlapping via antipads
 - Stagger vias.
 - Space vias apart.

- Overlook vertical return path??
 - Trace to Plane

- Plane to Plane

- Overlook cross-board return paths??
 - Avoid discontinuity.
 - Provide capacitors.

• Overlook off-board return paths??

- Current flows in loops.
 - Think of signal path and return path separately??

- Current flows in loops, but not this way.
- Current flows in pairs!
 - Signal and return go hand-in-hand.

R: Current Return Path??

• Trace out the current return path.

• Trace out the current return path.

• Trace out the current return path.

L: How do we control them?

- $L \rightarrow Signal Ringing$
 - Small loop (adjacent return, short, wide)
- $M_{21} \rightarrow Crosstalk$ (Inductive Coupling)
 - Separation, return proximity, twisting, shielding
- $L_G(M_G) \rightarrow Ground Bounce \rightarrow EMI_{CM}$
 - Coaxial, stripline, microstrip
 - Small H, large W, away from edge, guard traces
- $L_C \rightarrow Decoupling$
 - Small loop (zero/short wide traces, adjacent vias)
 - Use multiple capacitors and spread them out
- $M_C \rightarrow Filtering$
 - Minimize M (eliminate stub, via-in-pad, short wide trace)

IR: How do we control them?

- At kHz: $R_G \gg j\omega L_G$
 - Low-level analog or high-level noisy subsystems
 - Single-point grounding prevents common-Z coupling.
- At MHz/GHz: $R_G \ll j\omega L_G$
 - Horizontal return
 - Use ground planes/grids instead of ground traces.
 - Avoid traces crossing plane cuts.
 - Vertical return
 - Provide adjacent return pins for noisy or susceptible pins.
 - Provide adjacent vias, stitching capacitors as return bridges.
 - Provide sufficient vias for guard traces.

Summary

- L & I® affects signal quality, crosstalk and EMI.
- Inductance (L)
 - Forget self inductance.
 - Think loop, mutual, and partial inductance!
 - Think return proximity!
- Current Return Path (I®)
 - Low f: Current spreads out as $R_{\rm G}$ » $j\omega L_{\rm G}$.
 - High f: Trace out I® to identify discontinuities.